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Capacitance of the Abrupt Transition from

Coaxial-to-Circular Waveguide
M. RAZAZ AND J. BRIAN DAVIES, MEMBER, IEEE

A&nrct—A least-squares boundary residual methcd is appfied to

calcofate the discontinuity capacitance of an abrupt lraosition from

coaxial-to-eircofar wavegoide. Accurate values of the capacitance are pre-

sented here and compared with published reauks. Our resrdts are befieved

to be aceorate to about &0.1 fF and hence soitable for standards work.

1. INTRODUCTION

I N THIS WORK, the least-squares boundary residual

method (LSBRM) is applied to study a coaxial open-

circuit junction, as in Fig. 1. LSBRM is a numerical

technique which has attracted attention only recently [9],

[17], [18], [20] -[22]. An accurate knowledge of the discon-

tinuity capacitance [1] assumes the greatest importance in

the measurement of very small values of capacitance and

in immittance standardization [2].

The junction has been investigated by a number of

authors. Whinnery and Jamieson [1] were the first to

study the step transition of the junction and justify the

concept of an equivalent shunt capacitance placed at the

plane of the discontinuity. In a subsequent paper,

Whinnery et al. [3] evaluated the effects of discontinuities

in coaxial lines using Hahn’s series approach, and pre-

sented the values of the discontinuity capacitance for

different junctions in the form of graphs. Later investiga-

tions have shown that the original charts were in error by

up to 5 percent [4], and were thus not suitable for stan-

dards work. Somlo [4], [5] recomputed the equations de-

rived by Whinnery et al. [3] to five significant digits, thus

presenting more accurate results for the discontinuity

capacitance than had been available before. Risley [6], [7]

found the upper and lower bounds to the capacitance

using a Rayleigh–Ritz variational method. The advantage

of this technique is that it is mathematically rigorous. If

proper formulations for the upper and lower bounds can

be found, it provides an error estimation to the capaci-

tance, and hence the termination may be used for stan-

dards work. The main disadvantages of the technique are

that, for the analysis and computer programming, it needs
two separate, lengthy formulations for the calculation of

the upper and lower bounds; and numerical truncation

and round-off errors will invalidate the strictness of the

bounds. Woods [8], by interpolation of Somlo’s data [4]

has calculated the values of the discontinuity capacitance

for different coaxial line dimensions to four significant
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Fig. 1. Coaxial open-circuit junction.

digits. However, Woods’ and Somlo’s results differ signifi-

cantly from those obtained by Risley [6], [7], and are

closer to measured values [8].

Jurkus [19], following Sornlo’s work [4], [5] closely has

recomputed the capacitance of discontinuities formed by

coplanar-transverse steps in conductors of a coaxial line

as in [3]. For the case of abrupt transitions, as in this

paper, Jurkus claims results for the discontinuity capaci-

tance that agree with Somlo’s published results to within

0.05 percent, although without presenting any numerical

values.

Therefore, from both the theoretical and practical

points of view, more accurate results for the discontinuity

capacitance are needed. The purpose of this work is to

demonstrate the successful application of LSBRM to this

problem, and to report accurate values obtained for the

discontinuity capacitance of the open-circuited junction

(see Fig. 1) with different line dimensions. These results

are believed to be accurate to &O. 1 fF, and thus usable

for standards work. No such accuracy has been reported

before. For more detail on the work described in this

paper [17] should be consulted. An outline of earlier

results of this work was given in [18].

11. FIELD ANALYSIS

Consider the abrupt junction of a lossless coaxial-to-

circular waveguide as in Fig. 1. We assume that the device

is excited by an incident TEM wave which travels in

region 1 (z< O) towards the junction at z = O, and that the

output circular guide is of infinite length, with a diameter

such that all modes in region 2 (z> O) are evanescent.

Owing to the junction discontinuity, a reflected TEM

wave plus an infinite number of TMO. coaxial waveguide

modes in region 1, and an infinite number of circular
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TMO~ modes in region 2 are excited. As a result of

symmetry, all the modes excited have fields that are

independent of 0, and evanescent TE modes cannot be

excited in either region.

Combining expressions for the transverse components

of the TEM and TM modes, we can write the expressions

for the total transverse fields in the coaxial line (z< O) as

follows :

E~l)=aOtjO(e-’& +pe+’@)+ ~ an+ne+’nz (1)
a=]

If$’) = qOaO*O(e‘y& –pe+Y&) – ~ q~a~+~e+y.z (2)
~=1

where p = a~/aO is the required reflection coefficient at the

junction (z= O), a. and a: being the amplitudes of the
incident and reflected TEM modes, respectively; +., y.,

and q. denote, respectively, the normalized mode func-

tions, propagation constants, and wave admittances for

TM coaxial waveguide modes; *0, yO, q. are the corre-

sponding quantities for the TEM modes. The expressions

for all these quantities are given in [17].

Similarly, in the circular waveguide region (z> O), we

have as expressions for the total transverse fields

~=1

(3)

(4)
~=1

where &, Y;, and q: concern the TM circular waveguide
modes [17].

From (1) to (4), we proceed to match the transverse

fields across the boundary (z= O) between the regions by

using LSBRM. The boundary residual [9], [17] at the

junction can be represented by a positive-definite Hermi-

tian form in the amplitude coefficients as

~(ao,a:, {%}, {bw})=~’=~~

.
J(1 E; – E;\2+pZ;\H; – H;\*) W(s)ak

s
a

=
J (1

27r Ejl) – E:2)/2+pZ;]Hf]) – Hfz) Iz)rdr

:J’2mlEwrdr (5)

where W(s) is an arbitrary weighting function, subse-

quently put to unity:

a~=(ao,a&{an}, {b~}) (6)

and p is a dimensionless scaling factor, 20 is the free-space

wave impedance; and the various components of the E

and H fields are found from (1) to (4) by putting z = O. In
order to precisely match the fields across the boundary at

z = O, the field residuals, and hence the Hermitian form of

(5) must vanish. To achieve this, an infinite number of

modes must be included in the equation. However, for

numerical purposes we truncate the number of modes in

the field expansions, and require that the Herrnitian form

of (5) be minimized for a given amplitude of incident

TEM wave. This minimization, according to [9] is given

by

Cx=v (7)

resulting in the minimum value

A, =00– O*TX (8)

where the matrix F of (5) is partitioned as

()
F= -?! _._v::

c

and

X==(P; 1 { })

a. b~

<’~”

(9)

(110)

Summarized expressions are given in the Appendix for the

matrix elements of F above. Therefore, the problem of

minimizing (5) is reduced to solving (7), the solution of

which gives in x the required reflection coefficient p, and

the approximate coefficients {a. } and { b~ }.

Now having obtained p, the normalized input adrntit-
tance yin of Fig. 1 can be found from

l–p
.J’’in=~G (11)

The discontinuity capacitance Cd is then given by

Cd= ~ Im (y,.) (12)

where YC is the characteristic admittance of the coaxial

line, and is given by

y_~ 1
c 60 log (a/b) “

An advantage of the least-squares method is that it is

concerned with a positive (semi-) definite system, in that

an error residual is being minimized which is by definition

real and nonnegative. If the matrix order is increased f t )r a

given problem, the boundary residual is easily calculated,

and a typical plot is shown in Fig. 2. The curves are for

different values of the scaling factor p, defined in (5). ‘Mis

plot is a valuable check on convergence, as reductiorl of

the Hermitian form residual to zero is sufficient, as well as

a necessary condition.

The main advantages of the LSBRM technique for this
discontinuity problem are [9], [17]: 1) rigorous conver-

gence, being free from problems of relative converge~~ce,

2) the error minimization being global rather than dis-

crete, as in the case of point matching, 3) the use of,

probably, the fastest matrix solution algorithm, namely

Choleski’s method without pivoting: 4) the flexibility of
the scaling factor p in producing the generally decreasing

upper bounds and increasing lower bounds with variable

degrees of convergence. It was found [17] that particular

care had to be taken with the round-off and truncation

errors by proper formulation of the matrix elements,

otherwise the matrix C becomes nonpositive-definite and
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Fig. 2. Minimum of Hermitian form against number of modes.

the method fails to produce correct results. In this respect

a significant improvement in the accuracy of the results

was achieved by using I) highly accurate values of the

Bessel functions and their roots, and 2) by improved

formulation of the inner products (see Appendix) with

maximum use of the orthogonality relations. For instance,

use of Bessel functions and their roots, accurate only to

five significant figures, was found to make the curves in

Fig. 2 deviate wildly, and matrix C to even go nonposi-

tive-definite at orders around 10. By contrast, using the

corresponding values accurate to fifteen significant figures

in conjunction with the improved formulation gave

smooth curves as in Fig. 2 with matrix orders of up to 100.

It was also found [17] that numerical integration of the

elements of matrix F should be avoided if at all possible,

because of the difficulty of achieving adequate accuracy.

III. NUMERICAL RESULTS

To solve (7), Cholesky’s method with iterative refine-

ment [10] was used, and so gave an estimated P-condition
number of matrix C [11].

As a first example, for the calculation of discontinuity

capacitance, a 50-L? 3/4-in (19.05-mm) open-circuited
vacuum coaxial line with solid inner conductor was

studied, The inner and outer dimensions of the line are

2b = 8.2723 t 0.0005 mm and 2a= 19.0487A 0.0005 mm,

respectively. The reasons for choosing this particular line

were twofold. Firstly, upper and lower bounds to the

corresponding discontinuity capacitance have been

evaluated by Risley, using the Rayleigh-Ritz variational

method [6], [7]; secondly, the measured value of the

capacitance is available [6].
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Fig. 3. Equivalent capacitance against number of modes.

These upper and lower bounds and the measured value,

at 1000 Hz, are 217.7, 215, and 216.431 fF, respectively.

Fig. 3 shows the results for the discontinuity capacitance

Cd against the mode number N at ~= 1 GHz with different

values of the scaling factor p defined in (5). The number

of modes on each side of the discontinuity can be selected

independently, as the Hermitian form of (5) always has a

minimum. In contrast to both point-matching and Four-

ier-mode matching, which are critically dependent on

some point selection or number of terms in a kernel

approximation [12], [13], it was found that altering the

ratio M: N did not affect the apparent limit of conver-

gence; thus N= M was used for Fig. 3.

Fig. 3 also shows that the smaller values of the scaling

factor p correspond to a generally decreasing upper

bound, and conversely for the larger values. This depen-

dence of convergence from above or below, which is a

distinct advantage of LSBRM, is taken to be directly

related to Schwinger’s variational bounds [14], [15]; the

extreme values of p are associated with greater weighting
to the electric or magnetic boundary residuals (see 5).

An appropriate criterion for the selection of optimum p
would be to minimize the slope (tlCJ)/(~N) of Fig. 3. This

means that with a small (but not too small) value of N,

say N= 20, the optimum scaling factor pOPt can be ap-

proximated. Then as N is increased, the exact solution can

be approached with the most suitable convergence, and

hence, the possibility of a large saving of computer time.

Fig. 4 illustrates the P-condition number of matrix C

(for the case shown in Fig. 3) against the scaling factor p

for different matrix orders. It is interesting to note that the
minimum value of the condition number occurs for a
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this case, however, our much higher result for the capacit-
ance and the result given by Woods (see Table I) w-e

consistent with the measured value of 396 t 2.0 fF c~b-

tained by Spinney [8]. For the case of the 19.0487-mm

(50-fl) line, Risley’s result for the upper bound is, surpris-

ingly, only 0.15 percent higher than ours.

The 14.2875-mm (50-il) line in Table I was specifically

chosen to compare our results with Woods’ results and

also, with the measured value of 162.4 k 0.5 fF given by

Zorzy [8]. These comparisons show that there is good

agreement between Woods’ results and ours, which in

turn, support the measured value to within the experimen-

tal error.

We note that in Table I, our computed value of each

capacitance for given termination and frequency is the

average value of the most accurate upper and lower

bounds with appropriate scaling factors.

We believe that our results for the discontinuity capaci-

tance are accurate to about &O. 1 fF, and hence, suitalble

for standards work. This kind of accuracy is obtainable

with a typical number of modes, N= M = 50.

APPENDIX

FORMULATION OF THE ELEMENTS OF F

Substituting E, and HO from (1) to (4) into (5) gives

1 1 1 , ,

fio:l 10 103 105
2

10’ 109
M

+ [b2v ~ b~~~ rdr.
Fig. 4. P-condition number of C against scaling factor p for different

matrix orders N‘.

range of scaling factors close to that for optimum conver-

gence (see Fig. 3). We believe that an evaluation of the

matrix condition number is a most desirable check on the

numerical stability of the solution.

Table I shows values of the discontinuity capacitance

Cd computed by different authors for the coaxial open-

circuit junction of Fig. 1 with different line sizes. Table II

represents the percentage difference of the results (from

Table I) with respect to each other.

From these Tables one can see that our results, in

general, agree to within 0.17 to 0.25 percent with Woods’

and Somlo’s results, which in turn are close to the

measured values [5], [8].

For both the 7-mm (50-0) line and the 19.05-rnm (50-fl)

line, Risley’s results are approximately 1 percent higher

than ours, while for the 14-mm (50-fl) line, his result is 2.9
percent higher. In contrast, for the 19.05-mm (24.3-Q) line,

Risley’s results are about 3 percent lower than ours (see

Table II).

We should note that in Table I of Risley’s paper [6], the

value of the characteristic impedance for the 19.05-mm

(a/b = 1.5) line should read 24.3 Q instead of 25.3 L1. For

JO In=, I

We now partition C and o of (7) as

[1

c,~ C,2 c,~

c= C22 C23 (14)

UC** C33

‘)oT=(ol, g;, hM (15)

where UC is the upper triangle of C.

The evaluation of (13) is lengthy and involves inner

products of Bessel functions of the first and second kinds.

However, the choice of the weighting function W(s)= 1

makes the inner products expressible in terms of Lommel

integrals [16], and hence, offers the possibility of finding

closed form solutions for the elements of F. In formulat-

ing these elements, care has been taken to minimize

effects of the corresponding round-off errors. The analytic-

al formulas derived for the elements of F not only avoid

approximation errors inherent in any numerical integra-
tion, but also provide ease of computation. To avoid

lengthy details, only the final formulas are presentetl in

the following:

00= (+.,+O)(l +p) 0,=(+0,+0)(1–P) (~~)

gN(n) = o h~(lrs)= –(*O, +L)(l +P’no’&) (1V
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TABLE I

VALtms OF DISCONTINUITY CAPACITANCE FOR COAXIAL OPBN-CIRCUTT JUNCTION OF DIFFERENT SIZES

I
~j~. RI SLEY ‘ S UPPER SOHLO ‘ S

LINE SIZE

WOOD s ‘ W.ZAZ J.ND DAVIES~

ULIZP!CY BGUIJD 17ESLJLTS ~E5GLTs IL? SULTS PJZS2L’T.3

2a(mn) Zc(sl) f(Hz) cd(fF) Cd(fr) Cd (fF) cd(fF)

50 103 89.66 79.70 79.7 79.88
7

109 80.70 (not lvailable) 79.7 79.917

103 164.56 159.40 159.4 159.76
14 50

109 164.85 * * 160.039

103 * 162.67 162.7 163.04

14.2$375 I so —— —— .. ———. ——.-

109 * * 163.0 163.336

103 219.49 216.89 217.0 217.40
19.05 50

109 220.18 * 217.7 218.07

(NBS) 103 217.71 216.88 216. 9S57 217.38

19.0487 50

5- 0035 109 * * * 218.05

103 386.51 * 398.8 399.02
19.05 24.3

109 387.68 * * 400.18

TABLE II

RELATIVE DIFFERENCES (IN PERCENTAGE) OF DIFFERENT RESULTS FOR DISCONTIWITY CAPACITANCE

2a (m)

7

14

14.2875

19.05

(NBS )

19.0487
2.0005

19.05

3=>(0) f(l+z)

103
50

109

+=

103

50
109

103

50

10$’

103

50
109

t--

103
24.3

109

% filfference 3 Difference % Difference

1.19 cl.97 0.22

1.24 I 0.99 I 0.2s

3.13 I 2.92 I 0.22

* 2.92 *

* * 0.21

* * 0.21

1.13 0.95 0.18

1.13 0.96 0.17

* -3.22 I *

RAZAZ DAVIES 1S

R7SULTS w.r. t.

SO!4L0 ‘ S

% Difference

0.22

*

0.22

*

0.23

*

0.23

*

0.23

*

*

*

*not available
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+ y~*(l +p’?J&*q;) Sm, (22)

{
f3q= 1’ ‘=j :’;:; :’”””’M

O, i+j , ,,. ”., N

where p’ =pZ~, C$iJis the Kronecker delta, and the symbol

(,) shows an inner product over the aperture, unless it is

otherwise specified.

The expressions for the inner products in (16)–(22) are

(+0> +0) = ~: (23)

(+n,+i) = ‘Y~Kt?[ ‘2R?(Kna)- b2RZ7K.b)] ani (25)

(+.3+;) ‘z~kn ~, ‘ _ ~2
Yn~:Kn Jo(K~b)R1(K.b) (26)

‘@~@’(O’b)=[.Ji.)r
o[J:(K;b) -Jo(K:b)J,(K;b)] c$~,

+ C;(1 – 8~J)[ (l$’b)Jo(I$’b)J1 (K;b)

- (K#)Jo(K;b)J,(~b) ] (27)

where cm, C;, and R1(K.r) are given by

(28)

(30)

One interesting feature of (16)–(22) is that all elements

of F have physical interpretations in terms of the TEM

and TM modes in Fig. 1. As an example, o, represents the

contribution from the incident and reflected TEM modes;

and the elements of, say C23, show the contributions from

the evanescent TM modes in the coaxial and waveguide
regions, and so on.

It should be noted that (23) is the same as equation (38)

in [6]. In equation (44) of [6] there is a misprint, where

(y:)’ in the denominator must be replaced by y:’ of

Risley’s notation. When this is done it becomes identical

to (24) of this paper. There is, however, considerable
difference between (25) and (26) here and their counter-

parts in [6] given by their equations (45)–(5 1). These inner

products have been independently tested and compared

[17], and it was found that the formulations used here are

far less prone to round-off errors (and use less computer

time). The significant improvement is essentially due to

the greater use of orthogonality relations in our formula-

tions, so that all the Bessel function products of type J0.12,

YOY2, JOY2, and YOJZ present in equations (45)–(51) of [6]

are absent from (25) and (26). There is no counterpart

formulation in [6] to the inner product (+~, +~) of (27).
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