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Capacitance of the Abrupt Transition from
Coaxial-to-Circular Waveguide

M. RAZAZ anD J. BRIAN DAVIES, MEMBER, IEEE

Abstract—A least-squares boundary residual method is applied to
calculate the discontinuity capacitance of an abrupt transition from
coaxial-to-circular waveguide. Accurate values of the capacitance are pre-
sented here and compared with published results. Our results are believed
to be accurate to about +0.1 fF and hence suitable for standards work.

1. INTRODUCTION

N THIS WORK, the least-squares boundary residual

method (LSBRM) is applied to study a coaxial open-
circuit junction, as in Fig. 1. LSBRM is a numerical
technique which has attracted attention only recently [9],
[17], [18), [20]-[22]. An accurate knowledge of the discon-
tinuity capacitance [1] assumes the greatest importance in
the measurement of very small values of capacitance and
in immittance standardization [2).

The junction has been investigated by a number of
authors. Whinnery and Jamieson [1] were the first to
study the step transition of the junction and justify the
concept of an equivalent shunt capacitance placed at the
plane of the discontinuity. In a subsequent paper,
Whinnery et al. [3] evaluated the effects of discontinuities
in coaxial lines using Hahn’s series approach, and pre-
sented the values of the discontinuity capacitance for
different junctions in the form of graphs. Later investiga-
tions have shown that the original charts were in error by
up to 5 percent [4], and were thus not suitable for stan-
dards work. Somlo [4], [5] recomputed the equations de-
rived by Whinnery et al. [3] to five significant digits, thus
presenting more accurate results for the discontinuity
capacitance than had been available before. Risley [6], [7]
found the upper and lower bounds to the capacitance
using a Rayleigh—-Ritz variational method. The advantage
of this technique is that it is mathematically rigorous. If
proper formulations for the upper and lower bounds can
be found, it provides an error estimation to the capaci-
tance, and hence the termination may be used for stan-
dards work. The main disadvantages of the technique are
that, for the analysis and computer programming. it needs
two separate, lengthy formulations for the calculation of
the upper and lower bounds; and numerical truncation
and round-off errors will invalidate the strictness of the
bounds. Woods [8], by interpolation of Somlo’s data [4]
has calculated the values of the discontinuity capacitance
for different coaxial line dimensions to four significant
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Fig. 1. Coaxial open-circuit junction.

digits. However, Woods’ and Somlo’s results differ signifi-
cantly from those obtained by Risley [6], [7], and are
closer to measured values [8].

Jurkus [19], following Somlo’s work [4], [5] closely has
recomputed the capacitance of discontinuities formed by
coplanar-transverse steps in conductors of a coaxial line
as in [3]. For the case of abrupt transitions, as in this
paper, Jurkus claims results for the discontinuity capaci-
tance that agree with Somlo’s published results to within
0.05 percent, although without presenting any numerical
values.

Therefore, from both the theoretical and practical
points of view, more accurate results for the discontinuity
capacitance are needed. The purpose of this work is to
demonstrate the successful application of LSBRM to this
problem, and to report accurate values obtained for the
discontinuity capacitance of the open-circuited junction
(see Fig. 1) with different line dimensions. These results
are believed to be accurate to *=0.1 fF, and thus usable
for standards work. No such accuracy has been reported
before. For more detail on the work described in this
paper [17] should be consulted. An outline of earlier
results of this work was given in [18].

II. FIELD ANALYSIS

Consider the abrupt junction of a lossless coaxial-to-
circular waveguide as in Fig. 1. We assume that the device
is excited by an incident TEM wave which travels in
region 1 (z <0) towards the junction at z=0, and that the
output circular guide is of infinite length, with a diameter
such that all modes in region 2 (z > 0) are evanescent.

Owing to the junction discontinuity, a reflected TEM
wave plus an infinite number of TM,,, coaxial waveguide
modes in region 1, and an infinite number of circular
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TM,,, modes in region 2 are excited. As a result of
symmetry, all the modes excited have fields that are
independent of 6, and evanescent TE modes cannot be
excited in either region.

Combining expressions for the transverse components
of the TEM and TM modes, we can write the expressions
for the total transverse fields in the coaxial line (z <0) as
follows:

o0
EOM =aply(e " +pet )+ D, a,p,e (1)
n=1
1 [ore)
H{D =noagpoe 7 —pe* )= > n.a.6,et (2
n=1

where p= g,/ a, is the required reflection coefficient at the
Jjunction (z=0), a, and a; being the amplitudes of the
incident and reflected TEM modes, respectively; ¢,, v,,
and 7, denote, respectively, the normalized mode func-
tions, propagation constants, and wave admittances for
TM coaxial waveguide modes; g, v, 7o are the corre-
sponding quantities for the TEM modes. The expressions
for all these quantities are given in [17].

Similarly, in the circular waveguide region (z>0), we
have as expressions for the total transverse fields

0
EP= 3 b,¢,e " 3)
m=1

“

where ¢,,, v,,, and 1, concern the TM circular waveguide
modes [17].

From (1) to (4), we proceed to match the transverse
fields across the boundary (z =0) between the regions by
using LSBRM. The boundary residual [9], [17] at the
Jjunction can be represented by a positive-definite Hermi-
tian form in the amplitude coefficients as

I(ag,ay,{a,},{b,,})=a"TFa

o0
HP = 21 N D
m—

= [(1Bi= B+ p2Z31H; ~ HEP) () s
= [“20(|E®~ EOP+pZ2 B B P)rdr
b

(%)

where W(s) is an arbitrary weighting function, subse-
quently put to unity:

a’=(apap {a,},{b,}) (6)

and p is a dimensionless scaling factor, Z; is the free-space
wave impedance; and the various components of the E
and H fields are found from (1) to (4) by putting z=0. In
order to precisely match the fields across the boundary at
z=0, the field residuals, and hence the Hermitian form of
(5) must vanish. To achieve this, an infinite number of
modes must be included in the equation. However, for
numerical purposes we truncate the number of modes in
the field expansions, and require that the Hermitian form

b
+f 27| E®Prdr
()
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of (5) be minimized for a given amplitude of incident
TEM wave. This minimization, according to [9] is given
by

Cx=v (7
resulting in the minimum value
A =0,—0v*"x (8)
where the matrix F of (5) is partitioned as
*T
F= (.’f"_ 2 ) 9)
v C
and
4 b
T=lp,{ — 1. {21 i
x (P,{ao},{ao}) (10)

Summarized expressions are given in the Appendix for the
matrix elements of F above. Therefore, the problem of
minimizing (5) is reduced to solving (7), the solution of
which gives in x the required reflection coefficient p, and
the approximate coefficients {a,} and {b,,}.

Now having obtained p, the normalized input admit-
tance y;, of Fig. 1 can be found from

_1-r
The discontinuity capacitance C, is then given by
YC
Cd= 7 Im (ym) (12)

where Y, is the characteristic admittance of the coaxial
line, and is given by

Ve, 1

Y=o log(a/b)"

An advantage of the least-squares method is that it is
concerned with a positive (semi-) definite system, in that
an error residual is being minimized which is by definition
real and nonnegative. If the matrix order is increased for a
given problem, the boundary residual is easily calculated,
and a typical plot is shown in Fig. 2. The curves are for
different values of the scaling factor p, defined in (5). This
plot is a valuable check on convergence, as reduction of
the Hermitian form residual to zero is sufficient, as well as
a necessary condition,

The main advantages of the LSBRM technique for this
discontinuity problem are [9], [17]: 1) rigorous conver-
gence, being free from problems of relative convergence,
2) the error minimization being global rather than dis-
crete, as in the case of point matching, 3) the use of,
probably, the fastest matrix solution algorithm, namely
Choleski’s method without pivoting: 4) the flexibility of
the scaling factor p in producing the generally decreasing
upper bounds and increasing lower bounds with variable
degrees of convergence. It was found [17] that particular
care had to be taken with the round-off and truncation
errors by proper formulation of the matrix elements,
otherwise the matrix C becomes nonpositive-definite and
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Fig. 2. Minimum of Hermitian form against number of modes.

the method fails to produce correct results. In this respect
a significant improvement in the accuracy of the results
was achieved by using 1) highly accurate values of the
Bessel functions and their roots, and 2) by improved
formulation of the inner products (see Appendix) with
maximum use of the orthogonality relations. For instance,
use of Bessel functions and their roots, accurate only to
five significant figures, was found to make the curves in
Fig. 2 deviate wildly, and matrix C to even go nonposi-
tive-definite at orders around 10. By contrast, using the
corresponding values accurate to fifteen significant figures
in conjunction with the improved formulation gave
smooth curves as in Fig. 2 with matrix orders of up to 100.
It was also found [17] that numerical integration of the
elements of matrix F should be avoided if at all possible,
because of the difficulty of achieving adequate accuracy.

II1. NuUMERICAL RESULTS

To solve (7), Cholesky’s method with iterative refine-
ment [10] was used, and so gave an estimated P-condition
number of matrix C [11].

As a first example, for the calculation of discontinuity
capacitance, a 50-2 3/4-in (19.05-mm) open-circuited
vacuum coaxial line with solid inner conductor was
studied. The inner and outer dimensions of the line are
26=8.2723+0.0005 mm and 2a=19.0487+0.0005 mm,
respectively. The reasons for choosing this particular line
were twofold. Firstly, upper and lower bounds to the
corresponding discontinuity capacitance have been
evaluated by Risley, using the Rayleigh-Ritz variational
method [6], [7]; secondly, the measured value of the
capacitance is available [6].
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Fig. 3. Equivalent capacitance against number of modes.

These upper and lower bounds and the measured value,
at 1000 Hz, are 217.7, 215, and 216.4+1 {F, respectively.
Fig. 3 shows the results for the discontinuity capacitance
C, against the mode number N at f=1 GHz with different
values of the scaling factor p defined in (5). The number
of modes on each side of the discontinuity can be selected
independently, as the Hermitian form of (5) always has a
minimum. In contrast to both point-matching and Four-
ier-mode matching, which are critically dependent on
some point selection or number of terms in a kernel
approximation [12], [13], it was found that altering the
ratio M: N did not affect the apparent limit of conver-
gence; thus N= M was used for Fig. 3.

Fig. 3 also shows that the smaller values of the scaling
factor p correspond to a generally decreasing upper
bound, and conversely for the larger values. This depen-
dence of convergence from above or below, which is a
distinct advantage of LSBRM, is taken to be directly
related to Schwinger’s variational bounds [14], {15]; the
extreme values of p are associated with greater weighting
to the electric or magnetic boundary residuals (see 5).

An appropriate criterion for the selection of optimum p
would be to minimize the slope (0C,)/(3N) of Fig. 3. This
means that with a small (but not too small) value of N,
say N=20, the optimum scaling factor p,, can be ap-
proximated. Then as N is increased, the exact solution can
be approached with the most suitable convergence, and
hence, the possibility of a large saving of computer time.

Fig. 4 illustrates the P-condition number of matrix C
(for the case shown in Fig. 3) against the scaling factor p
for different matrix orders. It is interesting to note that the
minimum value of the condition number occurs for a
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Fig. 4. P-condition number of C against scaling factor p for different
matrix orders N’.

range of scaling factors close to that for optimum conver-
gence (see Fig. 3). We believe that an evaluation of the
matrix condition number is a most desirable check on the
numerical stability of the solution.

Table I shows values of the discontinuity capacitance
C, computed by different authors for the coaxial open-
circuit junction of Fig. 1 with different line sizes. Table II
represents the percentage difference of the results (from
Table 1) with respect to each other.

From these Tables one can see that our results, in
general, agree to within 0.17 to 0.25 percent with Woods’
and Somlo’s results, which in turn are close to the
measured values [5], [8].

For both the 7-mm (50-£) line and the 19.05-mm (50-2)
line, Risley’s results are approximately 1 percent higher
than ours, while for the 14-mm (50-) line, his result is 2.9
percent higher. In contrast, for the 19.05-mm (24.3-Q) line,
Risley’s resuits are about 3 percent lower than ours (see
Table IT).

We should note that in Table I of Risley’s paper [6], the
value of the characteristic impedance for the 19.05-mm
(a/b=1.5) line should read 24.3 Q instead of 25.3 Q. For
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this case, however, our much higher result for the capaci-
tance and the result given by Woods (see Table I) are
consistent with the measured value of 396+2.0 fF ob-
tained by Spinney [8]. For the case of the 19.0487-mm
(50-§2) line, Risley’s result for the upper bound is, surpris-
ingly, only 0.15 percent higher than ours.

The 14.2875-mm (50-8) line in Table I was specifically
chosen to compare our results with Woods’ results and
also, with the measured value of 162.4+0.5 {F given by
Zorzy [8]. These comparisons show that there is good
agreement between Woods’ results and ours, which in
turn, support the measured value to within the experimen-
tal error.

We note that in Table I, our computed value of each
capacitance for given termination and frequency is the
average value of the most accurate upper and lower
bounds with appropriate scaling factors.

We believe that our results for the discontinuity capaci-
tance are accurate to about +0.1 fF, and hence, suitable
for standards work. This kind of accuracy is obtainable
with a typical number of modes, N = M =150.

APPENDIX
FORMULATION OF THE ELEMENTS OF F
Substituting E, and H, from (1) to (4) into (5) gives
2
rdr

a N M
@ Fa= [ 2nl(a+ )+ T ag,~ 3 by,
n=1 m=1

y

N ra
rdr

a M
+pZOZL 277 (ao‘af))‘l’ono“ 2 annn¢n— 2 bmnr/n(;’)t’n
n=1 m=]
M 2
+ ["20] 3 b4, rav (13)
0 m=1
We now partition € and v of (7) as
Cll C12 C13
C= Gy Cy (14)
Uc*T C33
0" =(01,88ip) (15)

where U, is the upper triangle of C.

The evaluation of (13) is lengthy and involves inner
products of Bessel functions of the first and second kinds.
However, the choice of the weighting function W(s)=1
makes the inner products expressible in terms of Lommel
integrals [16], and hence, offers the possibility of finding
closed form solutions for the elements of F. In formulat-
ing these elements, care has been taken to minimize
effects of the corresponding round-off errors. The analyti-
cal formulas derived for the elements of F not only avoid
approximation errors inherent in any numerical integra-
tion, but also provide ease of computation. To avoid
lengthy details, only the final formulas are presented in
the following:

Vo= ooy (1+p) 01=Yo Yo (1 ~p) (16)
gn(n)=0 hy(m)= — Yo, P, (1 +P'710"1;n) (17)
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TABLE 1
VALUES OF DISCONTINUITY CAPACITANCE FOR COAXIAL OPEN-CIRCUIT JUNCTION OF DIFFERENT SIZES
FRE- RISLLY'S UPPER SOMLO'S wWooDnS! RAZAZ Z:NDADAVIES";
LINE SIZE JUENCY BOUND RLSULTS RESULTS RESULTS RESULTS
2a {rm) z (%) £(Hz) g (£F) cq (£F) cq (fF) cq (£F)
50 103 80.66 79.70 79.7 79.88
7 *
]_o9 80.70 {not available) 79.7 79.917
10° 164.56 159.40 159.4 159.76
14 50
10° 164.85 * % 160.039
103 * 162.67 162.7 163.04
14.2875 | 50 Y T
10 * * 163.0 163.336
103 219.49 216.89 217.0 217.40
19.05 50
10° 220.18 * 217.7 218.07
(NBS}) 10° 217.71 216.88 216.9557 217.38
19.0487 | SO
+ 0005 10° * * * 218.05
10° 386.51 * 398.8 399.02
19.05 24.3 5
10 387.68 * * 400.18
TABLE I1
RELATIVE DIFFERENCES (IN PERCENTAGE) OF DIFFERENT RESULTS FOR DISCONTINUITY CAPACITANCE
RISLEY 'S RISLEY'S RAZAZ DAVIES' | RAZAZ DAVIES'S
LING T2 PREQUENCY | ESULIS wor. e, |RESULTS w.r.t. | LESULTS w.x.t. | RISULTS w.r.t.
OO S RAZAZ DAVILES' | WOODS' SOMLO'S
2a (mm) ZC(Q) £ (Hz) % Difference % Difference % Difference % Difference
3
10 1.19 0.97 0.22 0.22
7 50 9
10 1.24 0.99 0.25 *
3
10 3.13 2.92 0.22 0.22
14 50 5
10 * 2.92 * *
10° x
* 0.21 0.23
14.2875 | 50 5
10 * * 0.21 *
3
10 1.13 0.95 0.18 0.23
19.05 50 3
10 1.13 0.96 0.17 *
3
(NBS) 10 0.35 0.15 0.20 0.23
19.0487 | 50
+.0005 107 * * " N
10° -3.18 -3.24 0.05 *
19.05 24.3 5
10 * -3.22 * *

*not available
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C,,=1v C,(1,n)=0 (18)
Cy5(1m)= Yo, ¢, ) (— 1+ p o) (19)
C(n,i) =<, ¢, > (1+p'nn,) 8, (20)
Cos(n.m) =< ¢, >(— 1+p'n7m,,) 21

Cys(m,j) = — <&} 0> @2 (p'ny, )

+7,,2(1+p"n,*n))8,, (22)
sl b =/ mj=l2- M
vl0, i# mi=12,---,N

where p'=pZ3, §, ;7 is the Kronecker delta, and the symbol
{,> shows an inner product over the aperture, unless it is
otherwise specified.

The expressions for the inner products in (16)—(22) are

<‘Po, Yo) = Ko2 (23)
(g B> =206, Jo(K;,b) (24)
Km
<¢m¢i> = ﬂYr%an[ alez(Kna) - blez(Knb) ] 8ni (25)
, Yo Y Ko ,
IR =27TmeKT_‘K‘2 Jo( K, D)R(K,b)  (26)
’ 2
;erN@b) | Tmb
<¢m’¢j> ]: aJl(K,:la) }

[TKLB) =T Kib) (Kb 18,
+ Ci(1=38,, ) (K/B)To (Kb (K;,b)

— (K, b)Jo( K, 0)T (K/D) ] e
where ¢,,, C;, and R,(K,r) are given by
K/
Va al (K,a)

2 YVm 1
r= 29
KK LK KD )
Rl(Knr)=A1‘]1(Knr)+BIYI(Knr)' (30)

One interesting feature of (16)—(22) is that all elements
of F have physical interpretations in terms of the TEM
and TM modes in Fig. 1. As an example, v, represents the
contribution from the incident and reflected TEM modes;
and the elements of, say C,;, show the contributions from
the evanescent TM modes in the coaxial and waveguide
regions, and so on.

It should be noted that (23) is the same as equation (38)
in [6]. In equation (44) of [6] there is a misprint, where
(».)* in the denominator must be replaced by vy,* of
Risley’s notation. When this is done it becomes identical
to (24) of this paper. There is, however, considerable
difference between (25) and (26) here and their counter-
parts in [6] given by their equations (45)—(51). These inner
products have been independently tested and compared
[17}, and it was found that the formulations used here are
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far less prone to round-off errors (and use less computer
time). The significant improvement is essentially due to
the greater use of orthogonality relations in our formula-
tions, so that all the Bessel function products of type J,J,,
Y,Y,. J,Y, and Y,J, present in equations (45)—-(51) of [6]
are absent from (25) and (26). There is no counterpart
formulation in [6] to the inner product {¢,,, ¢/ > of (27).
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